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Recently, it has been recognized that the cannabinoid receptor CB2 may play a functionally relevant role in the central nervous
system (CNS). This role is mediated primarily through microglia, a resident population of cells in the CNS that is
morphologically, phenotypically, and functionally related to macrophages. These cells also express the cannabinoid receptor
CB1. The CB1 receptor (CB1R) is constitutively expressed at low levels while the CB2 receptor (CB2R) is expressed at higher
levels and is modulated in relation to cell activation state. The relatively high levels of the CB2R correspond with microglia
being in ‘responsive’ and ‘primed’ states, suggesting the existence of a ‘window’ of functional relevance during which
activation of the CB2R modulates microglial activities. Signature activities of ‘responsive’ and ‘primed’ microglia are
chemotaxis and antigen processing, respectively. The endocannabinoid 2-arachidonylglycerol has been reported to stimulate a
chemotactic response from these cells through the CB2R. In contrast, we have shown in vivo and in vitro that the exogenous
cannabinoids delta-9-tetrahydrocannabinol and CP55940 inhibit the chemotactic response of microglia to Acanthamoeba
culbertsoni, an opportunistic pathogen that is the causative agent of Granulomatous Amoebic Encephalitis, through activation
of the CB2R. It is postulated that these exogenous cannabinoids superimpose an inhibitory effect on pro-chemotactic
endocannabinoids that are elicited in response to Acanthamoeba. Furthermore, the collective results suggest that the CB2R
plays a critical immune functional role in the CNS.
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Introduction

To date, two unique cannabinoid receptors, one located

primarily in the brain (CB1 receptor (CB1R)) and the other

in the immune system (CB2 receptor (CB2R)), have been

identified. The CB1R appears to be responsible for most, if

not all, of the centrally mediated effects of cannabinoids

(Compton et al., 1993). This receptor has been well

characterized using potent radiolabelled cannabinoid

agonists that bind in the high picomolar to low nanomolar

range. The CB1R is concentrated in areas of the brain that

control movement, coordination, sensory perception, learn-

ing and memory, reward and emotions, hormonal function,

and body temperature. This localization within the brain is

consistent with the pharmacological profile of cannabinoids

in that high densities are found in cerebellum, hippocampus

and cerebral cortex, whereas low quantities are present in the

brain stem (Herkenham et al., 1991; Thomas et al., 1992).

The CB1R is G-protein coupled as evidenced by inhibition of

adenylyl cyclase (Howlett et al., 1986), inhibition of N-type

calcium channels (Mackie and Hille, 1992) and increased

binding of non-hydrolyzable GTPgS in the presence of

cannabinoids (Sim et al., 1996). In addition, the cloning

of this cannabinoid receptor resulted from screening of a
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G-protein-coupled receptor library (Matsuda et al., 1990). It

is not surprising that a cannabinoid receptor was found also

in the immune system. Transcripts (that is, mRNAs) for the

CB1R and CB2R have been found in spleen and tonsils

(Munro et al., 1993; Galiègue et al., 1995) and other immune

tissues (Munro et al., 1993; Bouaboula et al., 1996). However,

in all cases reported to date, levels of message for the CB2R in

immune cells exceed those for the CB1R. The distribution

pattern of levels of CB2R mRNA displays major variation in

human blood cell populations with a rank order of B

lymphocytes4natural killer cellscmonocytes4polymor-

phonuclear neutrophils4CD8 lymphocytes4CD4 lympho-

cytes (Galiègue et al., 1995). A rank order for levels of CB2R

transcripts similar to that for primary human cell types has

been recorded for human cell lines belonging to the myeloid,

monocytic and lymphoid lineages (Galiègue et al., 1995). A

general similar pattern has been reported for mouse and rat

(Daaka et al., 1995). In addition, cognate protein has been

identified in rat lymph nodes, Peyer’s Patches and spleen

(Lynn and Herkenham, 1994). The presence of the CB2R

primarily within immune cells suggests a role for this

receptor in the activities attributed to these cells. However,

CB1R also may be involved in cannabinoid-mediated

modulation of select immune functions (Stefano et al.,

1996; Sinha et al., 1998; Waksman et al., 1999). Recent

studies support the presence of yet uncloned cannabinoid

receptors, principally on the basis of pharmacological

evidence of cannabinoid action in CB1R- and CB2R-deficient

mice (Jaggar et al., 1998; Di Marzo et al., 2000; Breivogel

et al., 2001). The first of these has been reported to couple

to Gi/o proteins (Hajos and Freund, 2002; Offertaler et al.,

2003), to be activated by micromolar concentrations of

abnormal-cannabidiol (CBD), a synthetic analogue of CBD,

and to be potentiated through cGMP and protein kinase G

(Begg et al., 2003). A second putative non-CB1, non-CB2

receptor has been referred to as the ‘palmitoylethanolamide

receptor’ because palmitoylethanolamide, an analogue of

anandamide that does not bind the CB2R, causes a reduction

of pain associated with inflammatory response (Calignano

et al., 1998; Jarai et al., 1999) that is blocked by the

CB2R antagonist ((1S-endo)-5-(4-Chloro-3-methylphenyl)-

1-((4-methylphenyl)methyl)-N-(1,3,3-trimethylbicyclo(2.2.1)

hept-2-yl)-1H-pyrazole-3-carboxamide (SR144528). The nu-

clear peroxisome proliferator-activated receptor-alpha

(PPAR-a) has been reported as the mediator of the anti-

inflammatory actions of this lipid amide (Lo Verme et al.,

2005a, b). Finally, Breivogel et al. (2001) reported the

existence of a ‘WIN receptor’ based on experiments of GTPgS

binding in brain membranes from CB1R knockout mice. In

their studies, anandamide and the aminoalkylindole

WIN55212-2 stimulated GTPgS binding. However, the

‘novel’ receptor was found to exhibit a pharmacology

distinctive from that of the CB1R and the CB2R. It was not

activated by delta-9-tetrahydrocannabinol (THC) and the

classical cannabinoid agonists (�)-cis-3-[2-Hydroxy-4-(1,1-

dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohex-

anol (CP55940) and HU210 and was blocked weakly by the

CB1R antagonist (5-(4-Chlorophenyl)-1-(2,4-dichlorophenyl)-4-

methyl-N-(1-piperidyl)pyrazole-3-carboxamide hydrochloride

(SR141716A).

Microglia are CB2R-expressing resident
macrophages in the CNS

There is increasing evidence that the CB2R, in addition to its

linkage to immune cell activities at peripheral sites, plays a

functionally relevant role in immunity in the CNS. This role

appears to be exerted primarily through microglia, a resident

population of cells in the brain, spinal cord and retina that is

morphologically, phenotypically and functionally related to

macrophages (Streit et al., 1988; Dickson et al., 1991; Ling

and Wong, 1993; Gehrmann et al., 1995; Gehrmann, 1996;

Aloisi et al., 1998; Stoll and Jander, 1999). The function of

‘quiescent’ microglia in normal brain is not well understood,

but in pathological conditions, they play an active role as

immunoeffector/accessory cells. Microglia migrate and pro-

liferate during and after injury and inflammation (Leong

and Ling, 1992; Kreutzberg, 1995, 1996; Benveniste, 1997a).

Once activated, they produce various cytokines including

interleukin (IL)-1, IL-6 and tumour necrosis factor-a (Giulian

et al., 1986; Reid et al., 1993; Benveniste, 1997b), and express

major histocompatability complex (MHC) class I and II

antigens and the complement receptor, CD11/CD18 com-

plex. Microglia, also, are phagocytic and, upon activation,

can process antigens and exert cytolytic functions. Para-

doxically, these cells not only play a role in host defense and

tissue repair in the CNS (Streit et al., 1988; Perry, 1990), but

also have been implicated in nervous system disorders,

such as Multiple Sclerosis (MS) (Matsumoto et al., 1992),

Alzheimer’s disease (Rogers et al., 1988), Parkinson’s disease

(McGeer et al., 1988) and acquired immune deficiency

syndrome (AIDS) dementia (Dickson et al., 1991; Merrill

and Chen, 1991; Spencer and Price, 1992). Neural histolo-

gical features of AIDS dementia complex include diffuse

leukoencephalopathy of the white matter, which is accom-

panied by severe loss of myelin and sparing of fibres

(Kleihues et al., 1985). Discrete areas of demyelination with

hypertrophied astrocytes, which also contain microglia,

blood-derived macrophages and multinucleated giant cells,

are observed. The multinucleated giant cells have been

reported to constitute syncytia of macrophages or microglia,

which are productively infected with the human immuno-

deficiency virus type 1 (HIV1) and are a histopathological

hallmark of subacute encephalitis in HIV1-infected brains

(Koenig et al., 1986; Michaels et al., 1988) and spinal cords

(Eilbott et al., 1989; Maier et al., 1989). Thus, it has been

proposed that in AIDS dementia, macrophages and microglia

are the predominant cell types, which are infected and

produce HIV1 (Koyanagi et al., 1987; Kure et al., 1990).

Manifestations of AIDS dementia indicate that direct infec-

tion by the HIV probably does not account for CNS

dysfunction. Tumours, such as extranodal primary malig-

nant B cell lymphomas (Snider et al., 1983; Gray et al., 1988)

and cerebral deposits of Kaposi’s sarcoma resulting from

metastases of lung foci (Gorin et al., 1985; Gray et al., 1988),

have been shown to occur either before or at the time of

patient seroconversion and before onset of immune suppres-

sion (Perry, 1990). Cerebrovascular complications, such as

vasculitis and haemorrhages within cerebral tumour areas

or in areas of demyelination, also have been shown to occur

before onset of immune suppression. These observations
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suggest that inflammatory cells and their products are

actively involved in these histopathological events.

The CB2R is differentially expressed by microglia

Microglia, consistent with other immune cells, undergo

maturation, differentiation and activation, processes, which

are characterized by differential gene expression and acquisi-

tion of correlative distinctive functional capabilities (Adams

and Hamilton, 1984; Hamilton et al., 1986; Hamilton and

Adams, 1987). Peritoneal macrophages, macrophage-like

cells and microglia can be driven sequentially in response

to multiple signals from ‘resting’, to ‘responsive’, ‘primed’

and ‘fully’ activated states, a process that mimics events in

vivo (Figure 1). Using this in vitro model, it has been shown

that levels of CB2R mRNA and protein are modulated

differentially in relation to cell activation state (Carlisle

and Cabral, 2002). The CB2R is not detected in ‘resting’ cells,

is present at high levels in ‘responsive’ and ‘primed’ cells,

and is identified at greatly diminished levels in ‘fully’

activated cells. In contrast, the CB1R is present in microglia

at relatively low levels and is expressed constitutively in

relation to cell activation state. These observations suggest

that the CB2R is expressed ‘on demand’ and that the

modulation of CB2R levels is a feature common to cells of

macrophage lineage as they participate in the inflammatory

response. Furthermore, the relatively high levels of CB2R

recorded for microglia when in ‘responsive’ and ‘primed’

states suggest that these cells exhibit a functionally relevant

‘window’ during which they are most susceptible to the

action of cannabinoids. Finally, since the kinetics of CB1R

and CB2R expression by microglia are distinctive, activation

of the two receptors by endogenous and/or exogenous

cannabinoids may result in disparate functional outcomes.

Consistent with observations suggestive of a functionally

relevant ‘window’ for CB2R expression, a number of studies

have indicated that activities attributed to ‘fully’ activated

microglia are not susceptible to cannabinoid-mediated

action that is linked to the CB2R. Waksman et al. (1999)

reported that the production of inducible nitric oxide (iNO),

a potent inflammatory mediator that is released from

microglia and macrophage-like cells upon their ‘full’

activation, was inhibited by cannabinoids in a mode that

was linked, at least in part, to the CB1R. The cannabinoid

receptor high-affinity binding enantiomer CP55940 exerted

a concentration-dependent (0.1–8mM) inhibition of nitric

oxide (NO) release from neonatal rat microglia subjected

to activation with interferon-g in concert with bacterial

lipopolysaccharide, which far exceeds the binding and

agonist activity at either of the CB receptors. In contrast, a

minimal inhibitory effect on iNO production was exerted by

the lower affinity binding paired enantiomer CP56667.

These results implicated a cannabinoid receptor as linked

functionally to the inhibition of iNO production, since the

binding affinity of the paired enantiomers has been shown

to correlate with bioactivity in vivo and in vitro (Compton

et al., 1993; Felder et al., 1995), and enantiomeric selectivity

is a characteristic feature of receptor-mediated cellular

activity. To confirm the NO release data, the effect of the

paired cannabinoid enantiomers on the activity of nicotina-

mide adenine dinuleotide phosphate-diaphorase was deter-

mined since its proportional intracellular activity correlates

with that of NO synthase in neuronal cells (Hope et al.,

1991). Consistent with the NO data, a differential inhibition

of nicotinamide adenine dinuleotide phosphate-diaphorase

activity in rat microglia was effected by CP55940 versus its

paired enantiomer CP56667. Pretreatment of microglia with

the Gai/Gao protein inactivator pertussis toxin, cyclic AMP

reconstitution with the cell-permeable analogue dibutyryl-

cAMP or treatment with the Gas activator cholera toxin,

resulted in reversal of the CP55940-mediated inhibition of

NO release. Finally, functional studies performed with the

CB1R-selective antagonist SR141716A (Rinaldi-Carmona

et al., 1994) resulted in a reversal of the CP55940-mediated

inhibition of iNO production. Collectively, these immune

pharmacological results supported a functional linkage

between the CB1R and cannabinoid-mediated inhibition of

iNO production by neonatal rat microglia. Puffenbarger et al.

(2000) extended these studies on the effects of cannabinoids

on ‘fully’ activated microglia and indicated that the inhibi-

tion of the inducible expression of pro-inflammatory

cytokines was exerted through a non-CB1, non-CB2 receptor

process. Exposure of neonatal rat cortical microglia to THC

resulted in reduced amounts of lipopolysaccharide-induced

mRNAs for IL-1a, IL-1b, IL-6 and tumour necrosis factor-a. Of

IL-1�/�

NO

TNFα IL-6

Activated
(cytotoxicity)

IFNγ LPSChe

Responsive
(chemotaxis, phagocytosis)

Primed
(antigen presentation)

Resting

Figure 1 In vitro model of macrophage/microglial multi-step activation. Peritoneal macrophages, macrophage-like cells and microglia can be
driven sequentially in response to multiple signals from ‘resting’ to ‘responsive’, ‘primed’ and ‘fully’ activated states, a process that mimics
events in vivo. Each of these states is characterized by differential gene expression and acquisition of correlative distinctive functional
capabilities (modified from: Adams and Hamilton, 1984; Hamilton et al., 1986; Hamilton and Adams, 1987).

Functional relevance of the CB2R in the CNS
GA Cabral et al242

British Journal of Pharmacology (2008) 153 240–251



these cytokine mRNAs, the response of that for IL-6 was

exquisitely sensitive to THC treatment. Similarly, exposure

of microglia cells to the putative endogenous cannabinoid

(endocannabinoid) anandamide before lipopolysaccharide

treatment resulted in a decrease in cytokine mRNA levels,

but not to the same extent as that caused by THC; however,

when methanandamide, the non-hydrolyzable analogue

of anandamide, was tested, its ability to inhibit cytokine

mRNA expression was comparable to that of THC. Exposure

of microglia to either of the paired enantiomers CP55940 or

CP56667 resulted in similar inhibition of lipopolysaccharide-

induced cytokine mRNA expression. A comparable inhibi-

tory outcome was obtained when the paired enantiomers

levonantradol and dextronantradol were employed. Neither

the CB1R-selective antagonist SR141716A nor the CB2R-

selective antagonist SR144528 (Rinaldi-Carmona et al., 1998)

was able to reverse the inhibition of cytokine mRNA

expression by levonantradol. Collectively, the absence of

stereoselectivity in the inhibition of cytokine mRNA expres-

sion and the inability of either the CB1R or CB2R antagonists

to block the inhibitory effect of levonantradol demonstrated

that while cannabinoids had the capacity to modulate levels

of pro-inflammatory cytokine mRNAs in neonatal rat

microglia, the inhibition of cytokine mRNA expression is

apparently mediated neither through the CB1R nor through

the CB2R.

Chemotaxis as a signature activity of ‘responsive’
microglia

Signature activities of macrophage-like cells when in ‘re-

sponsive’ and ‘primed’ states of activation, states associated

with the early inflammatory response, are chemotaxis and

antigen presentation, respectively. Chemotaxis is the ability

of cells to migrate in response to a stimulus and is distinctive

from stimulus-independent random cellular motion

(Lauffenburger and Horwitz, 1996; Mitchison and Cramer,

1996). Chemotaxis differs from chemokinesis, a stimulus-

dependent cellular motility whereby cells exhibit enhanced

random motion that is dependent on a chemo-stimulant

(Becker, 1977; Keller et al., 1978). Thus, chemotaxis is a

process in which cell motility is directed towards a

concentration gradient of chemo-stimulant (Harris, 1953,

1954; Jin and Hereld, 2006; Kehrl, 2006). In this chemotactic

process, macrophage-like cell interaction with chemoattrac-

tants not only initiates a rapid and directed movement but

also is associated with a complex array of cellular events that

includes changes in ion fluxes, alterations in integrin avidity,

production of superoxide anions and secretion of lysosomal

enzymes (Murdoch and Finn, 2000). ‘Classical’ chemoattrac-

tants include bacterial-derived N-formyl peptides, the com-

plement fragment peptides C5a and C3a, and lipids such as

leukotriene B4 and platelet-activating factor (Schiffmann

et al., 1975; Goldman and Goetzl, 1982; Hanahan, 1986;

Gerard and Gerard, 1994). Chemokines represent a second

group of chemoattractants. These 8- to 17-kDa molecular

mass range cytokines are selective for leucocytes in vitro and

elicit accumulation of inflammatory cells in vivo (Baggiolini

et al., 1994, 1997; Kim, 2004; Le et al., 2004). As in the case

for cannabinoid receptors, the specific effects of chemokines

on target cells are mediated by G-protein-coupled receptors

(Murdoch and Finn, 2000; Charo and Ransohoff, 2006).

Ligation of chemokines with their cognate receptors initiates

a series of signal transductional events that results in

regulation of leucocyte trafficking in inflammation, tissue

injury, tumour development and host response to infection

(Charo and Ransohoff, 2006).

Several studies have documented that cannabinoids affect

the migratory activities of macrophages and macrophage-

like cells. Stefano et al. (1998) reported that acute exposure to

anandamide resulted in transformation of macrophages

from an amoeboid and motile state to that of a rounded

and non-motile conformation. These investigators proposed

that the transforming events were linked to the CB1R since

the CB1R-selective antagonist SR141716A blocked the

transformation. Sacerdote et al. (2000) demonstrated that

in vivo and in vitro treatment of rat peritoneal macrophages

with CP55940, a full agonist at both CB1R and CB2R,

resulted in decreased migration in vitro to the peptide formal-

methionyl-leucine-phenylalanine. It was indicated, how-

ever, that while both the CB1R and CB2R were involved in

this process, the cannabinoid-mediated effect was linked

primarily to the CB2R. The chemotactic response of mouse

macrophages to formal-methionyl-leucine-phenylalanine

also has been shown to be decreased by CBD (Sacerdote

et al., 2005), a cannabinoid that binds weakly to the CB2R.

The CB2R antagonist SR144528 prevented this decrease,

suggesting a functional linkage to the cognate receptor.

Walter et al. (2003) found that the endocannabinoid 2-

arachidonylglycerol (2-AG) triggered migration of microglia

and that the CB2R was involved in this effect. Franklin and

Stella (2003) demonstrated that arachidonylcyclopropyla-

mide, an agonist selective for the CB1R, induced a dose-

dependent increase in migration of mouse microglial cell

line BV-2. However, while the arachidonylcyclopropylamide-

induced response was blocked by pertussis toxin pretreat-

ment consistent with the involvement of a Gi/o-protein-

coupled receptor, the CB1R antagonist SR141716A did not

prevent the arachidonylcyclopropylamide-mediated migra-

tion. In contrast, two antagonists of the CB2R (SR144528

and cannabinol) as well as two antagonists of ‘abnormal-

CBD-sensitive’ receptors (O-1918 and CBD) prevented the

response. Based on these collective results, Franklin and

Stella (2003) suggested that CB2Rs and ‘abnormal-CBD-

sensitive’ receptors regulated the migration of microglial-like

cells. Stella and co-workers extended these studies and

showed that P2X7 ionotropic receptors played a key role in

controlling the production of 2-AG by microglia (Witting

et al., 2004). Recently, Raborn et al. (in press) demonstrated

that THC and CP55940 mediated inhibition of mouse

peritoneal macrophage chemotaxis to the chemokine

RANTES/CCL5 and that this event was linked to the CB2R.

In these studies, the CB2R-selective ligand O-2137 (1-[4-(1,1-

Dimethylheptyl)-2,6-dimethoxyphenyl]-3-methylcyclohexanol)

exerted a robust inhibition of chemotaxis, while the

CB1R-selective ligand (N-(2-Chloroethyl)-5Z,8Z,11Z,14Z-

eicosatetraenamide (ACEA) had a minimal effect. The

CP55940-mediated inhibition was reversed by the CB2R-

selective antagonist SR144528 but not by the CB1R-selective
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antagonist SR141716A. In addition, THC treatment had a

minimal effect on the chemotactic response of peritoneal

macrophages from CB2R knockout mice. Collectively, the

preponderance of data that has been obtained indicates that

cannabinoids act through the CB2R to alter macrophage

migration with exogenous cannabinoids, such as THC

exerting inhibitory effects and endocannabinoids such as

2-AG eliciting an opposite stimulatory effect. Furthermore,

the studies of Raborn et al. (in press) indicate that THC and

CP55940 can transdeactivate migratory responsiveness to

the chemokine RANTES/CCL5, suggesting that signaling

through the CB2R leads to ‘cross-talk’ with chemokine

receptors. Thus, the CB2R may be a constituent element of

a network of G-protein-coupled receptor signal transduc-

tional systems, inclusive of chemokine receptors, that act

coordinately to modulate macrophage migration.

It has been shown that the CB2R also is involved in

cannabinoid-mediated inhibition of processing of select

antigens by macrophages. Antigen processing and presenta-

tion constitute a complex set of events. The activation of

helper/inducer CD4þ T cells requires their physical contact

with another cell type called an antigen-presenting cell,

which is partially due to the specificity of the T-cell antigen

receptor, a plasma membrane protein. Unlike antibodies, the

T-cell receptor does not bind to antigen alone, but rather the

receptor recognizes a complex composed of the antigen and

MHC class II molecules that are expressed at the surface of

antigen-presenting cells (Schwartz, 1985). CD4þ T cells are

usually specific for protein antigens, not carbohydrates or

lipids. The form of the antigen in the complex with MHC

class II molecules is a peptide fragment, not the native

antigen (Guillet et al., 1987). In addition, these antigens

usually are not synthesized by the antigen-presenting cells

but are exogenous proteins (Germain, 1986). This process

is distinctive from that which occurs for cytotoxic

CD8-positive T cells, which recognize peptide antigens that

can be derived from endogenous proteins in the context of

MHC class I molecules on antigen-presenting or infected

target cells. Important functions of antigen-presenting cells

are internalization of antigen, proteolytic cleavage of anti-

gen into peptides, formation of the peptide-class molecule

complex and expression of the complex at the cell surface

(Germain, 1986). These series of events comprise antigen

processing. Once the complex is expressed at the cell surface,

the process is referred to as antigen presentation. Several

steps in antigen processing have been characterized. Soluble

protein antigens are internalized by antigen-presenting cells

through endocytosis, which is either nonspecific or receptor

mediated (Unanue and Allen, 1987). Of the various types of

antigen-presenting cells, only macrophages internalize

particulate antigens by phagocytosis (Unanue and Allen,

1987). Other phagocytic cells lack MHC class II molecules

and do not function as antigen-presenting cells. Regardless

of the mode of antigen uptake, intracellular antigen enters

an acidic organelle, where antigen processing probably

occurs. Treatment of antigen-presenting cells with acido-

tropic agents, such as chloroquine, ammonium chloride and

monensin (McCoy and Schwartz, 1988), that neutralize

intracellular acidic pH eliminate antigen processing (Seglen,

1983). Cathepsins, acid proteases, within the acidic organelles

are thought to cleave the antigens. Various protease

inhibitors prevent antigen processing by antigen-presenting

cells, depending on the antigen (Van der Drift et al., 1990).

Thus, the interference by cannabinoids such as THC with

any one of these steps could result in impaired antigen

processing.

McCoy et al. (1999) examined the effect of THC on the

processing of intact lysozyme by macrophages. It was

demonstrated that THC impaired the ability of a macro-

phage hybridoma to function as an antigen-presenting cell

based on its ability to secrete IL-2 upon stimulation of a

soluble protein antigen-specific helper T-cell hybridoma.

THC exposure significantly reduced the T-cell response to

the native form of the antigen after pretreatment of the

macrophages with nanomolar drug concentrations. How-

ever, THC did not affect IL-2 production when the macro-

phages presented a synthetic peptide of the antigen to the

T cells, suggesting that the drug interfered with antigen

processing, not peptide presentation. The cannabinoid

inhibition of the T-cell response to native lysozyme was

stereoselective consistent with the involvement of a canna-

binoid receptor. That is, the bioactive CP55940 diminished

T-cell activation, whereas the inactive stereoisomer CP56667

did not. The macrophage hybridoma expressed mRNA for

the CB2R but not for the CB1R, whereas the T cells expressed

an extremely low level of mRNA for the CB2R. The CB1R-

selective antagonist SR141716A did not reverse the suppres-

sion caused by THC, demonstrating that the CB1R was not

responsible for the drug’s inhibitory effect. In contrast, the

CB2R-selective antagonist SR144528 completely blocked the

THC suppression of the T-cell response. These collective

results implicated the macrophages as the target of canna-

binoid inhibition of antigen processing in a mode that was

linked functionally to the CB2R.

Cannabinoids modulate chemotaxis of microglia

The cumulative results of immune pharmacological studies

implicate the CB2R as playing a relevant functional role in

the early inflammatory process by macrophages and macro-

phage-like cells, namely chemotaxis and antigen-processing

functional attributes of these cell types when in ‘responsive’

and ‘primed’ states. Since microglia constitute a resident

population of macrophages in the brain, exhibit phenotypic

and functional properties of macrophages, and express the

CB2R at maximal levels when in ‘responsive’ and ‘primed’

states, a ‘window’ of functional relevance for the CB2R

comparable to that for macrophages at peripheral sites may

be operative. That is, antigen processing and/or chemotaxis

by these cells may be particularly susceptible to cannabi-

noids in a mode linked to activation of the CB2R. To address

this possibility, we have employed in vivo and in vitro rodent

models of Granulomatous Amoebic Encephalitis, a chronic

progressive infection of the CNS that is caused by

Acanthamoeba culbertsoni (A. culbertsoni). A. culbertsoni is a

free-living amoeba that can infect both immune-competent

and immune-suppressed individuals (Martinez, 1993; Marciano-

Cabral and Cabral, 2003) and has two morphologic forms as

part of its life cycle, a trophozoite and a dormant cyst. The
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trophozoite is the invasive form of this protozoan. The portal

of entry of A. culbertsoni may be the nasal passages, the lower

respiratory tract, open wounds or ulcers in the skin, or any

mucosal or serosal surface (Martinez, 1993). For brain

infections, trophozoites are thought to enter either by the

olfactory neuroepithelial route following the nerve pathway

from the nasal mucosa to the olfactory bulb or by

haematogenous spread from a primary site of infection,

such as a cutaneous lesion (Martinez, 1993; Marciano-Cabral

and Cabral, 2003). Once in the brain, amoebae may be

destroyed by immune effector cells, such as microglia.

Alternatively, amoebae may cause a subacute infection that

is characterized by encystment and establishment of a

chronic state associated with granuloma formation. The

formation of granulomas around amoebae is thought to play

a role in limiting dissemination. Although the incubation

period for Acanthamoeba spp. infections is unknown, several

weeks may be necessary to establish clinical signs. The

relatively prolonged course of neuropathological events

associated with Granulomatous Amoebic Encephalitis in

rodent animal models affords the opportunity to investigate

the outcome of infection with sublethal levels of Acanthamoeba

as well as the characterization of the cellular elements

within the brain whose functional activities against this

protozoan may be affected by cannabinoids. Utilizing a

(B6C3)F1 mouse model of Granulomatous Amoebic Encepha-

litis in which trophozoites were introduced through the

intranasal route to mimic a natural route of infection in

humans, we demonstrated that THC exacerbated Acantha-

moeba-induced neuropathogenesis. Mice treated with THC

exhibited higher mortalities from infection with Acanthamoeba

as compared to similarly infected vehicle control mice

(Marciano-Cabral et al., 2001). Serial frozen sections of brain

from vehicle-treated infected mice processed for immuno-

fluorescence for colocalization of amoebae and macro-

phage-like cells utilizing hyperimmune rabbit polyclonal

anti-Acanthamoeba (Marciano-Cabral et al., 2000) and rat mono-

clonal anti-Mac-1 (anti-CD11b/CD18) antibody were found

to contain few amoebae (Cabral and Marciano-Cabral, 2004).

In contrast, numerous Acanthamoeba were detected in brain

sections from infected animals treated with THC. Staining of

paired serial sections with anti-Mac-1 antibody demon-

strated that Mac-1þ cells in vehicle-treated animals were

abundant in focal areas of infected brain tissue. However,

these focal areas contained few amoebae. In contrast, foci in

brain tissue from infected, THC-treated mice were replete

with amoebae but contained few Mac-1þ cells. Comparable

results were obtained when paraffinized brain sections were

subjected to haematoxylin and eosin staining (Figure 2,

unpublished data). For vehicle-treated mice, numerous foci

of individual amoebic trophozoites surrounded by clusters

of cells that resembled microglia morphologically were

observed. Assessment of replicate sections using isolectin

B4, a marker for microglia, indicated that cells clustering

around amoebae were predominantly microglia. In contrast,

for THC-treated mice, individual amoebic trophozoites were

dispersed in the olfactory lobe and frontal areas of the brain

in the absence of immune cell aggregates. The paucity of

Mac-1þ cells at focal sites of Acanthamoeba infection in the

brain of mice treated with THC suggests that these immune

cells either do not migrate to infected areas or are selectively

targeted by the Acanthamoeba and destroyed.

To determine whether THC exerted a direct effect on

microglia, and to assess for a role of the CB2R in this process,

in vivo studies were complemented with those in vitro.

Acanthamoeba were maintained in culture for 24 h to

generate an Acanthamoeba-conditioned medium (CM) that

harbours proteases and other factors released from amoebae

that serve as chemotactic stimuli for attracting microglia.

THC treatment of neonatal rat cerebral cortex microglia

in vitro resulted in a significant inhibition of the migratory

response to CM (Figure 3, unpublished data). Experiments

Figure 2 THC downregulates accumulation of macrophage-like
cells at focal sites of Acanthamoeba in mouse brain. (B6C3)F1 mice
were treated once intraperitoneally with THC (25 mg kg�1) or
vehicle (ethanol:emulphor:saline, 1:1:18), inoculated intranasally
with 3 LD50 of A. culbertsoni, killed and the brains were removed.
Paraffin sections were stained with haematoxylin and eosin. (a)
Section from vehicle-treated mouse depicting accumulation of
macrophage-like cells around Acanthamoeba (arrow). (b) Section
from THC-treated mouse depicting Acanthamoeba in the brain in the
absence of macrophage-like cell accumulation (arrows). THC, delta-
9-tetrahydrocannabinol.
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performed with THC were replicated using CP55940, the full

agonist at the CB1R and CB2R. Again, treatment of microglia

with CP55940 resulted in a significant concentration-related

decrease in migration in response to CM. The concentration-

related inhibitory effect of THC and CP55940 on the

migratory response of neonatal rat cerebral cortex microglia

to CM implicated a role for a cannabinoid receptor. Thus, to

obtain insight as to the cannabinoid receptor linked to the

inhibitory effect, microglia were treated with compounds

exhibiting selective high affinity binding to the CB1R or the

CB2R antecedent to assessment of the migratory response

(Figure 4, unpublished data). Treatment of microglia with

the highly selective CB2R ligand O-2137 resulted in a

profound and significant inhibition in the migratory

response to CM. In contrast, the CB1R-specific ligand ACEA

exerted a minimal inhibitory effect on the microglial

migratory response to CM. To confirm the data indicating

that activation of the CB2R with a cannabinoid receptor

selective ligand exerted a major inhibitory effect on

the migratory response to CM, cannabinoid receptor

agonist–antagonist experiments were performed (Figure 5,

unpublished data). Treatment of microglia with the CB1R

antagonist SR141716A did not block the inhibitory effect of

CP55940. In contrast, treatment of microglia with the CB2R-

specific antagonist SR144528 resulted in a reversal of the

inhibitory effect of CP55940 indicating that the cannabi-

noid-mediated inhibition of the CM-stimulated microglial

response was linked, at least in part, to the CB2R.

The mode by which THC and other exogenous cannabi-

noids such as CP55940 inhibit the chemotactic response of

microglia to Acanthamoeba remains to be defined. However,

it is known that Acanthamoeba produce proteases, phospho-

lipases and other factors (Marciano-Cabral and Cabral, 2003)

that may act on phospholipids in microglial membranes,

generating cleavage products (Cabral, 2005). It is postulated

that bioactive lipid mediators thus generated include the

endocannabinoid 2-AG that serves to drive chemotaxis by

autocrine and/or paracrine activation of the CB2R. The

exogenous cannabinoid THC may inhibit this chemotactic

response by superimposing a signal transductional activation

of the CB2R. That is, THC could inhibit the synthesis and/or

release of 2-AG or, alternatively, by virtue of its relative long

half-life as compared to that of 2-AG, preclude this

endocannabinoid from ligating to the CB2R. A proposed

model of the role of the CB2R in modulation of the

microglial chemotactic response to Acanthamoeba is shown

in Figure 6.

Conclusion

The CNS is a complex arena that consists of a diverse group

of cell types, including neurons, oligodendrocytes, microglia

and astrocytes. While astrocytes are the predominant cell

type of the CNS, microglia are the resident macrophages of

the brain and provide the first line of defense against injury,
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assault and/or infection. These myeloid lineage cells also

play an important role in remodelling and regeneration of

the CNS. The combined cellular functions of both astrocytes

and microglia form the innate immune system of the CNS.

Although the CNS is a highly sophisticated network of

checks and balances, it possesses a vulnerability to a multi-

tude of neurodegenerative and neuroinflammatory pro-

cesses. Some of these include Alzheimer’s disease,

Parkinson’s Disease, MS, amyotrophic lateral sclerosis and

HIV-associated dementia. The pathological hallmark of these

diseases is chronic inflammation induced by persistent cell

activation and elicitation of proinflammatory mediators

(that is, NO, cytokines and chemokines). Studies have shown

that microglia and microglia-derived cells are the major cell

types responsible for this neuroinflammation. For example,

during the first stages of brain inflammation, microglia-

derived macrophages play a key role, and their presence is

the consequential step in the neurodegeneration that

follows (Ashton et al., 2007). Studies performed using

immunohistochemistry have demonstrated that activated

microglia are detected in senile plaques of Alzheimer’s

disease patients (Ramirez et al., 2005). In addition, activated

microglia, depicted by a change from a ramified morphology

to an amoeboid morphology, have been detected in the

spinal cords of MS and amyotrophic lateral sclerosis patients

immediately following death (Yiangou et al., 2006).
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During activation, microglia upregulate an array of cell-

surface receptors that may be critical in microglial regenera-

tion and/or degeneration of the CNS. Included among these

are immunoglobulin (Ig) superfamily receptors, complement

receptors, toll-like receptors, cytokine/chemokine receptors,

opioid receptors and cannabinoid receptors. Microglia have

been found to express both the CB1R and CB2R in vitro

(Carlisle and Cabral, 2002; Carrier et al., 2005) and to

produce the endocannabinoids 2-AG as well as anandamide

in lesser quantities (Carrier et al., 2004). Thus, these cells

appear to harbour a fully constituted system of endogenous

cannabinoid ligands and cognate receptors. Activation of

the CB2R on these cells appears to promote migration and

proliferation. Walter et al. (2003) demonstrated that 2-AG

induced migration of microglia and that this occurred

through the CB2R and abnormal-CBD-sensitive receptors,

with subsequent activation of the extracellular signal-

regulated kinase 1/2 signal transduction pathway. These

investigators also demonstrated that microglia expressed the

CB2R at the leading edge of lamellipodia, consistent with

their involvement in cell migration.

There is accumulating evidence that the CB2R is also

expressed in the CNS. Van Sickle et al. (2005) reported the

presence of CB2R mRNA and protein in brainstem neurons.

Furthermore, the CB2Rs were found to be activated by the

cognate agonist 2-AG and by elevated endogenous levels

of endocannabinoids that also signal through the CB1R. In

addition, Fernandez-Ruiz et al. (2007), using a variety of

neurodegenerative disease models, reported the expression

of the CB2R in microglia, astrocytes and neuron sub-

populations. This expression of the CB2R in vivo apparently

is attributed, in large measure, to microglia. In several

neurodegenerative diseases, upregulation of microglial

CB2R has been observed (Zhang et al., 2003; Benito et al.,

2005, 2007; Maresz et al., 2005; Yiangou et al., 2006; Ashton

et al., 2007). In addition, CB2R-positive microglia have been

identified dispersed within active MS plaques and localized

in the periphery of chronic active plaques (Benito et al.,

2007).

The collective findings refute the concept that the only

cannabinoid receptor that has a functionally relevant role in

the CNS is the CB1R. The current data indicate that the

CB2R can also be present in the CNS and that its expression

is associated with a variety of inflammatory processes. This

expression is manifest primarily when microglia are in

‘responsive’ and primed’ states of activation, signature

activities of which include cell migration and antigen

processing. It has been proposed that the role of the CB2R

in immunity in the CNS is primarily that of anti-inflamma-

tory (Carrier et al., 2005). In this context, this receptor has

the potential to serve as a therapeutic target for appropriately

designed CB2R-specific ligands that could act as anti-

inflammatory agents in MS and other neuropathological

processes. For example, in Theiler’s virus infection of mouse

CNS, an animal model for human MS, it was demonstrated

that the synthetic cannabinoids WIN55,212-2, ACEA and

JWH-015 improved neurological deficits, and reduced micro-

glial activation, MHC class II expression and T-lymphocyte

infiltration (Arevalo-Martin et al., 2003). Thus, selective

targeting of the CB2R could lead to ablation of neuropatho-

logical processes while minimizing psychotropic effects that

could be exerted by activation of the CB1R.
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